California Department of Transportation (Caltrans) and California Geological Survey (CGS) have instrumented a number of bridges, and have been collecting their strong motion response measurements for more than two decades (Hipley and Huang, 1997). The deployed instrument sets usually include down-hole sensor arrays, and accelerometers installed on piles, pile-caps, and decks. These bridges are located relatively close to faults identified on the Caltrans Seismic Hazard Map (Mualchin, 1996). The intent has been to select different bridge types, ranging from standard ordinary bridges to those such as toll bridges with unique features.
This paper presents three-dimensional global high-fidelity numerical (finite element) models for three representative bridges—namely, a standard ordinary non-skewed bridge, a skewed bridge, and a non-standard long-span bridge. There are multiple sets of acceleration records due to nearby earthquakes for each of the selected bridges. We carefully, albeit heuristically, calibrate the parameters of these models to improve the agreement between the measured and predicted responses. Upon model calibration, the calculated displacement responses of the simulation models match remarkably well with those obtained from the acceleration records at major locations on the specimen bridges.
Details
Title | Validation of Current Seismic Design Nonlinear Time History Analysis |
Pages | 17 |
Language | English |
Format | MP4 |
Size | 8 MB |
Download Method | Direct Download |
Download Links | BECOME A MEMBER VIEW DOWNLOAD LINKS |
The post Validation of Current Seismic Design Nonlinear Time History Analysis appeared first on Civil Engineering Community.
from Civil Engineering Community https://ift.tt/3eS6Eqg